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Abstract—Profile (e.g., contact list, interest, mobility) matching
is more than important for fostering the wide use of mobile social
networks. The social networks such as Facebook, Line or Wechat
recommend the friends for the users based on users personal
data such as common contact list or mobility traces. However,
outsourcing users’ personal information to the cloud for friend
matching will raise a serious privacy concern due to the potential
risk of data abusing. In this study, we propose a novel Scalable
and Privacy-preserving Friend Matching protocol, or SPFM in
short, which aims to provide a scalable friend matching and
recommendation solutions without revealing the users personal
data to the cloud. Different from the previous works which
involves multiple rounds of protocols, SPFM presents a scalable
solution which can prevent honest-but-curious mobile cloud from
obtaining the original data and support the friend matching of
multiple users simultaneously. We give detailed feasibility and
security analysis on SPFM and its accuracy and security have
been well demonstrated via extensive simulations. The result show
that our scheme works even better when original data is large.

Index Terms—Friend matching, Privacy preserving, Cloud
security, XOR.

I. INTRODUCTION

Along with the popularity of the smartphone and ubiquitous
wireless access, mobile clouds are becoming an inseparable
part of our life. People use different clouds provided by dif-
ferent applications to store their private data such as contacts,
mail address lists or bank accounts while mobile applications
use these data to provide a wide range of service such as friend
recommendation. Profile (e.g., contact list, interest, mobility)
matching is more than important for fostering the wide use of
mobile social networks because recommending the individuals
of the common contacts list/similar interests is always the first
step for any social networking. The social networks such as
Facebook, Line or Wechat recommend the friends for the users
based on contact list or mobility traces.

The existing mobile social network systems pay little heed
to the privacy concerns associated with friend matching and
recommendation based on users’ personal information. For
example, in Facebook, it provides the feature of People You
May Know, which recommends the friends based on the
education information, the contact lists obtained from users’
smartphone, and other users’ personal information. However,
outsoucing users’ personal information to the cloud for friend
matching will raise a serious privacy concern. The potential
risk for personal data to be abused for economic and social
discrimination, hidden influence and manipulation, is alarming
[1], which has been well demonstrated by the facts such as
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iCloud Data Breach[2].Existing researches show that loss of
privacy can expose users to unwanted advertisement and s-
pams/scams, cause social reputation or economic damage, and
make them victims of blackmail or even physical violence[3].

Recently, there are quite a few proposals for private profile
matching, which allow two users to compare their personal
profiles without revealing private information to each other[4–
7]. In a typical private profile matching scheme, the personal
profile of a user consists of multiple attributes chosen from
a public set of attributes (e.g., various interests[4], disease
symptoms[8], or friends[9] etc.). The private profile matching
problem could then be converted into Private Set Intersection
(PSI)[10, 11], or Private Set Intersection Cardinality (PSI-
CA)[12, 13]. However, we argue that the existing works may
fail to work in practice due to the following two reasons. First-
ly, the best practice in industry for friends recommendation
is a multiple-users matching problem rather than a two-party
matching problem. Some pre-share parameters between users
are more likely to leak. Secondly, most of the existing works
involve multiple rounds of protocols, which will suffer from
a serious performance challenge.

In this study, we propose a novel Scalable and Privacy-
preserving Friend Matching protocol, or SPFM in short, which
aims to provide a scalable friend matching and recommen-
dation solutions without revealing the users personal data to
the cloud. Our basic motivation is that each user obfuscates
every bit of the original personal data (e.g., contact list) before
uploading by performing XOR operations with a masking
sequence which is generated with a certain probability. Our
design can ensure that the same data maintain a statistical sim-
ilarity after obfuscation while different data can be statistically
classified without leaking the original data. The contributions
of this work are summarized as follows:

• We propose a Scalable and Privacy-preserving Friend
Matching scheme (SPFM) to prevent privacy leakage in
friend matching and recommendation system.

• We provide a detailed feasibility and security analysis as
well as the discussion of correctness, True-Negative rate
and True-Positive rate.

• Extensive evaluations have been performed on SPFM to
demonstrate the feasibility and security. The result show
that our scheme works even better when original data is
large.

This paper is organized as follows. In section II, we give
the related work. In section III, we introduce our system
model and corresponding adversary models. In section IV, we
describe system implement in detail. A thorough feasibility
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and security analysis are demonstrated in section V. In Section
VI we give the experiment performance and in section VII, we
conclude this paper.

II. RELATED WORK

Agrawal et al. [14] first proposes Privacy-Preserving Data
Mining (PPDM), which tries to perturb individual records in
an aggregated database. However, this paper mainly focuses
on statistical information of unordered databases and doesn’t
rise to the level of data matching.

There are lots of relevant work can complete the cloud data
matching, such as deterministic encryption[15, 16] and order-
preserving encryption[17, 18]. However, these work also need
negotiation between users, which cannot be applied in our
scenario since conspiracy attack between malicious users and
cloud server may occur.

With the interaction among users in the existing applications
received more and more attention, a lot of research on the issue
of privacy data matching has been raised recently.

Li et al. [4] applies additive homomorphic encryption in
privacy preserving in a scenario with many intermediate
computing parties. Narayanan et al. [19] and Dong et al. [5]
computes social proximity to discover potential friends by
leveraging both homomorphic cryptography and obfuscation,
which is more efficient.

More privacy-preserving computation schemes based on
encryption, obfuscation or cooperative computing such as [20–
27] require multiple exchanges between participants,which is
not suitable for the cases where users are not connected to
each other or is not connected or number of users is relatively
large.

III. PROBLEM FORMULATION

In this section, we will describe our problem in detail. We
will first introduce application scenarios and system model.
Then we present assumptions and adversary models of our
scenario.

A. Application scenario

Nowadays, it is observed that many mobile social networks
(e.g., Facebook, Wechat, Line) have provided the functionality
of friend recommendation, which recommends the new friends
to a user based on his contact list, education, mobility and oth-
er factors. To achieve this service, the various social networks
need to collect the personal data of the users. Take Facebook’s
“People You May Know” as an example. It is stated by
Facebook that it shows the potential friends “based on mutual
friends, work and education information, networks you’re part
of, contacts you’ve imported and many other factors”. For
some of user personal data such as contact lists, it relies on
apps installed on smart phones to collect the data and upload
the data to the cloud. The cloud can determine if two users
are friends by checking their common attributes such as the
same school, common friends or similar mobility patterns.

However, the sensitive data uploaded to the cloud may face
the risk of leaking users’ sensitive data and compromising
users’ privacy. In this work, we consider a privacy preserving

friend matching scenario, in which the users’ data will be
obfuscated before uploading to the cloud. Thus in the friend
matching process, the server has no idea of the original
sensitive data but it can still perform the friend matching and
recommendation service.

B. System definition
In Section VI our system will be illustrated to be a profile

matching system that can be widely used in many scenarios. In
order to present the universal scene of our matching scheme,
we need to define some concepts first.

Definition 1. (Potential Matching Probability). A Po-
tential Matching Probability (Pm) is the probability of two
individuals’ original data are the same on the condition of
they are in the same group.

Universal scene of our system can be described as follows.
Each of K parties has an N-bit sequence. Some of these
uncorrelated sequences may have the same value and the
unknown probability is called Pm. Now these K parties need
a notary to judge whom of these people may have the same
sequence and they do not want the notary public to get their
own precise sequence.

Our system has been proven in section V to be effective
when Pm is in an appropriate range, usually larger than
0.00001. In reality, the value range of Pm may be large and in
order to ensure Pm to be in a suitable range, we define Data
Tag to make our system able to be applied in wider scene.

Definition 2. (Data Tag). Data Tag is an identifier of cer-
tain original private data, which has only limited information
of the original data.

A Data Tag can be meaningful or meaningless labels. It
aims at improving Pm by dividing the original large group
into series of small groups in the case of almost no leakage
of user’s privacy. For a certain system, the generation of Data
Tag need to satisfy a certain rule. For example, to determine
whether some users have common friend in contacts, system
can use contacts’ name abbreviations as labeled data, like AT
for Alan Turing. In this paper, we define PT as the probability
of two individual data are the same when these 2 individuals
share a same Data Tag.

In this paper, we have chosen such a mobile cloud scenario.
Our Mobile Cloud Storage System (MCSS) consists of a cloud
server denoted as C and some users (or parties) denoted as
U = {u1, ..., uK}. These users only establish a connection
with cloud server C, and don’t establish contact or share any
information with each other.

These users upload their obfuscated data to cloud sever after
masking the original private data by using a masking sequence
generation probability preset by the cloud server before. Cloud
server C launches the data match processing function and in
this paper its goal is to find whether there are some users
owning the same original data.

C. Assumptions and Adversary models
In our MCSS, cloud server also determines two users are

real friends by matching how many friends they have in
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common. However, instead of fetching their exact contact list,
MCSS tries to match using low-level tags (usually insensitive
information, in this paper, abbreviation of linkmen’s name as
an example) and corresponding obfuscated data e.g. phone
number, mail address after obfuscating process.

We assume two real friends have a number of common
friends and they store some common friends in contact list
with the same name and telephone number.

There are two main adversary models in this paper. One
is external attacker, who will try to get your privacy through
hacking your cloud account. In this case, what attacker can get
is usually relatively limited, generally only obfuscated data and
Data Tags.

Another adversary model which is also mainly considered
in this paper is honest-but-curious server (HBCS), i.e. a cloud
server which will try to find out your privacy and record it but
honestly follow the whole protocol. The data a cloud server
can get is huge and a small loophole may cause hundreds of
millions privacy leakage.

IV. SYSTEM DESIGN

In this section, we describe the system design in detail. In
our system, there are four steps in process of applying SPFM
in MCSS. Fig. 2 provides an overview of the work-flow of
our approach. Algorithm 1 explains how SPFM works and we
will describe each step in detail.

A. Parameters Setup

In the first step, the system needs to set up masking
generation probability pk. pk is a value greater than 0.5,
and pk will determine the masking degree. The more pk is
close to 0.5, the greater the degree of disturbance and the
privacy-protect ability of the whole system is. However, this
will reduce the data matching accuracy as well. In practical
applications, the system will determine a pk by different needs
of security and privacy. The masking generation probability is
a common knowledge for the cloud and all users.

B. Data Masking

The second step is performed on each user’s device. In this
step, each user will use masking generation probability pk to
deal with private data needed to be uploaded. For each original
sequence, a masking sequence of a same length is needed to
obfuscate the original sequence. In a binary case, for each bit
of a masking sequence, it has probability pk to be a 0,1− pk
to be a 1.

For example, for an N -bit binary original sequence rep-
resented by B = {b1, b2, b3, ..., bN}. The user firstly repeat
random process N times under this probability pk and we
will get a binary masking sequence of length N, which is
represented by O = {o1, o2, o3, ..., oN}. Then do XOR of the
original sequence and the masking sequence to generate a N -
bit sequence called obfuscated data. Obfuscated sequence and
the process are showed as follows.

C = {c1, c2, c3, ..., cN}

ci = bi ⊕ oi, i = 1, 2, ..., N

After all sequences are obfuscated, user need to upload these
obfuscated sequences C and the corresponding Data Tag to the
cloud. As for those masking sequences, users can store them in
other cloud or other devices, which will be used when restore
original data from the cloud.

Algorithm 1 SPFM (U, Cloud, pk)

1: U,Cloud← pk.
2: for each ui ∈ U do
3: Di ← ListOfContact(ui).
4: Ti ← AbbreviationOfName(Di).
5: Bi ← PhoneNumber(Di).
6: for each Bix ∈ Bi do
7: Ox ←MaskGeneration(pk).
8: Cix = Bix ⊕Ox.
9: end for

10: ui upload Ci with Ti to Cloud .
11: end for
12: ui put forward matching demand.
13: Cloud carries out the following operations.
14: for uj(i 6= j) ∈ U do
15: for each tx ∈ Ti do
16: for each ty ∈ Tj do
17: if tx == ty then
18: MatchResult←MatchingPhase(Cix, Cjy).
19: else
20: MatchResult = No← (Cix, Cjy).
21: end if
22: end for
23: end for
24: end for

C. Profile Matching

In the third step, we first introduce two definitions Threshold
and Matching Ambiguity in this step to adjust the matching
accuracy, we use the threshold nth to describe matching
criteria, and the matching ambiguity Kth to be the ratio of
the threshold and the original data’s length.

Definition 3. (Threshold). Threshold (nth) is the minimum
number of same bits in two scrambled sequences (e.g. C and
C

′
) from 2 users when server judges these two users have

the same original sequences (B = B
′
). For an N -bit binary

private sequence, scrambled sequence is also N -bit. Cloud
server will do XOR of two scrambled sequences to judge how
many bits they differ. (The XOR result of two different bits
is 1 while the XOR result of two same bits is 0.) The result
of XOR process indicates the deviation of C and C

′
. We use

D = {d1, d2, d3, ..., dN} to represent it.

di = ci ⊕ c
′

i, i = 1, 2, ..., N

Threshold nth is the minimum number of 0 in D when server
judge C and C

′
having the same original sequences which

means B = B
′
.

Definition 4. (Matching ambiguity). The ratio of Thresh-
old and the original data’s length is defined as Matching
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Ambiguity (Kth). For an N -bit binary sequence, the ratio of
Threshold and N is defined as the Matching Ambiguity.

Kth =
nth

N

The increase of the Matching Ambiguity will significantly
increase the probability of T-P at the expense of some ac-
curacy. In the actual development, system should select an
appropriate Matching Ambiguity according to pk and N .

When a user requests for matching, the server will use the
obfuscated sequence and Data Tag to match. Now suppose that
the server tries to find out whether two users are real friends in
reality. The key is to find out how many common friends they
have in contacts. The server first does a traversal through two
users’ Data Tags and fine all of the same Data Tags. For one
of these same Data Tag, do XOR operation of their obfuscated
sequences. If the number of 0 in the XOR results is more than
nth, then server considers that the original data of these two
obfuscated sequences are the same. In the application scenario
of this paper, server will consider the telephone number stored
in two users under this Data Tag are the same. In other words,
the Data Tag represents a common friend of these two users.

After a thorough traversal of all the Data Tags, server will
get the number of common friends between these two users,
which can be further used as a judge basis whether the two
users are real friends in reality.

V. PROTOCOL ANALYSIS

A. Notations and Technical Preliminaries

Notations. Please refer to Table I. B,B
′
, O,O

′
, C,C

′
,

Ci, D are all binary sequence which can expressed like
B = {b1, b2, ..., bN}.

Preliminaries. We assume that each bit in a series of original
private data is independent and has equal probability to be ’0’
or ’1’. Then

P (Sb = nb) =
(
N
nb

)
(
1

2
)N

B. Priori Probability Analysis

We define priori probability as the probability of
matching(Sd ≥ nth) on condition of certain nb. So it can
be expressed as P (Sd ≥ nth|Sb = nb). Theorem 1 gives its
solution.

TABLE I: Notation
N Sequence length
pk Probability to generate O,O

′

p1 Priori probability for 1 bit
M Number of different Cs of a same B

B,B
′

N-bit original binary sequence
O,O

′
N-bit masking sequence

C,C
′
, Ci N-bit obfuscated sequence

D XOR result of C,C
′

Sb Number of 0s in B and B
′

Sd Number of 0s in D
nth Threshold for Sd to judge matching
Kth Ratio of nth and N
PT−P True-Positive probability
PT−N True-Negative probability
PT Probability of B = B

′
when Data Tag matching

Pg(n) Probability of guesssing an n-bit B

Theorem 1. Given nb, threshold nth, sequence length N and
masking probability pk, the priori probability is:

P (Sd ≥ nth|Sb = nb) =

N∑
nd=nth

min{nd,nb}∑
n0=max{0,nd+nb−N}

G
(1)

where G =
(
nb

n0

)(
N−nb

nd−n0

)
pN−nb−nd+2n0
1 (1− p1)

nb+nd−2n0 .

Proof: For each i ∈ [0, N ], we have

P (di = 0|bi = b
′

i) = P (di 6= 0|bi 6= b
′

i) = p2k + (1− pk)
2

P (di 6= 0|bi = b
′

i) = P (di = 0|bi 6= b
′

i) = 2pk(1− pk)

Here we define

p1 = p2k + (1− pk)
2 ∈ (0.5, 1)

Then consider the case of N bits. Given nd and nb, we have

P (Sd = nd|Sb = nb) =

min{nd,nb}∑
n0=max{0,nd+nb−N}

G

where G =
(
nb

n0

)(
N−nb

nd−n0

)
pN−nb−nd+2n0
1 (1− p1)

nb+nd−2n0 .
Finally, to calculate the priori probability we add all prob-

ability of satisfying nd up. So we get

P (Sd ≥ nth|Sb = nb) =
N∑

n1=nth

P (Sd = n1|Sb = nb)
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Because the priori probability is the sum of all P (Sd =
nd|Sb = nb) of all nd satisfying nd ≥ nth, it is negatively
correlates with threshold nth.

Consider Data Tag. According to the above derivation, once
Sb is decided, the probability of Sd ≥ nth is decided. It
means the matching of Data Tags has no effect on the priori
probability. Using ’T = T

′
’ to represent the matching of Data

Tags, and ’T 6= T
′
’ on the contrary. Then we have

P (Sd ≥ nth|Sb = nb, T = T
′
)

= P (Sd ≥ nth|Sb = nb, T 6= T
′
)

= P (Sd ≥ nth|Sb = nb)

(2)

C. True-Positive and True-Negative Analysis

True-Positive(T-P for short) means matching(Sd ≥ nth) on
condition of B = B

′
(or Sb = N ). Its probability is defined as

PT−P which can be expressed as follows.

PT−P = P (Sd ≥ nth|Sb = N)

=

N∑
nd=nth

(
N
nd

)
pnd
1 (1− p1)

N−nd
(3)

True-Negative(T-N for short) means not matching(Sd <
nth) on condition of B 6= B

′
(or Sb 6= N ). Its probability

is defined as PF−N which can be expressed as follows.

PT−N =

∑N−1
nb=0 P (Sd < nth|Sb = nb)P (Sb = nb)

P (Sb 6= N)

D. Correctness Analysis

The correctness (posterior probability) indicates the proba-
bility of B = B

′
on condition of matching(Sd ≥ nth) and

Data Tag matching. So it can be expressed as follows.

P (Sb = N |Sd ≥ nth, T = T
′
)

Theorem 2. Given sequence length N , masking probability
pk, threshold nth and PT , the correctness is:

P (Sb = N |Sd ≥ nth, T = T
′
) =

PT−PPT

1−PT

2N−1
∑N−1

nb=0

(
N
n

)
P (Sd ≥ nth|Sb = nb) + PT−PPT

(4)

where PT−P = P (Sd ≥ nth|Sb = N)

Proof: To make it simple and clear to derivate, here we
define EB to represent the event of B = B

′
(Sb = N ), EB(n)

to represent the event of Sb = n, EM to represent the event
of matching (Sd ≥ nth) and ET to represent the event of
Data Tag matching (T = T

′
). Then the correctness can be

expressed as follows.

P (EB |EM ∩ ET ) =
P (EB ∩ EM ∩ ET )

P (EM ∩ ET )

=
P (EM |EB ∩ ET )P (EB |ET )

P (EM |ET )

(5)

where

P (EM |ET ) =

N∑
n=0

P (EM |EB(n) ∩ ET )P (EB(n)|ET )

And we define PT = P (EB |ET ) as a parameter decided
by the type of Data Tag. Then the posterior probability can be
simplified as follows.

P (EB |EM ∩ ET ) =
P (EM |EB)PT∑N

n=0 P (EM |EB(n))P (EB(n)|ET )
(6)

When n 6= N ,

P (EB(n)|ET ) =P (EB(n)|Sb 6= N)P (Sb 6= N |ET )

=

(
N
n

)
2N − 1

(1− PT )
(7)

Therefore,

P (EB |EM ∩ ET ) =

P (EM |EB)PT

1−PT

2N−1
∑N−1

n=0

(
N
n

)
P (EM |EB(n)) + P (EM |EB)PT

(8)

E. Security Analysis

When our SPFM is facing the external attacker, the attacker
can get a share of obfuscated data by hacking user’s cloud
account. When our SPFM is under honest-but-curious attack
model, the attack can get some series of obfuscated data of
the same private data.

Assume there are M series of obfuscated data attacker can
get from M clients. These obfuscated data are represented
by C1 = {c11, c12, ..., c1N}, C2 = {c21, c22, ..., c2N}, ..., CM =
{cM1 , cM2 , ..., cMN }. And the cloud server confirms that the
corresponding original private data are all the same, which
is B = {b1, b2, ..., bN}. So the cloud server can use these
series together to guess the original data.

For each bi, the cloud server can calculate the number of 1s
and 0s . Since 1 and 0 are symmetrical on math, commonly
the server can use a guessing scheme that guess the number
whose amount is more than the other.

Let n0 represent the number of 0s in {c1i |i = 1, 2, ...,M}
and n1 represent the number of 1s . So when n0 > n1 guess
0, when n0 < n1 guess 1 and when n0 = n1 guess 0 or
1 at random. Then the priori probability can be expressed as
follow.

P (n0|bi = 0) =
(
M
n0

)
pn0

k (1− pk)
M−n0

P (n1|bi = 1) =
(
M
n1

)
pn1

k (1− pk)
M−n1

P (guess0|bi = 0) =
∑

n0>n1

P (n0|bi = 0)+
1

2
P (n0 = n1|bi = 0)

P (guess1|bi = 1) =
∑

n1>n0

P (n1|bi = 1)+
1

2
P (n0 = n1|bi = 1)

where n0 + n1 = M .
Using Bayes’ Theorem and Law of Total Probability, the

correctness of guessing can be expressed as follow.

P (bi = 0|guess0) =
P (guess0|bi = 0)P (bi = 0)

P (guess0|bi = 1)P (bi = 1) + P (guess0|bi = 0)P (bi = 0)
(9)
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(c) Correctness

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

Tr
ue

-P
os

iti
ve

 P
ro

ba
bi

lit
y

 

p1=9/16
p1=10/16
p1=11/16
p1=12/16
p1=13/16
p1=14/16
p1=15/16

(d) T-P probability
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(e) T-N probability
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Fig. 2: T-P probability, T-N probability and Correctness for N , Kth and p1

Since P (bi = 0) = P (bi = 1) = 1
2 ,

P (bi = 0|guess0) = P (guess0|bi = 0)

P (guess0|bi = 1) + P (guess0|bi = 0)

Since the symmetry between 0 and 1, we have 1 −
P (guess0|bi = 1) = P (guess1|bi = 1) = P (guess0|bi = 0).
So the correctness can be simplified as follow.

P (bi = 0|guess0) = P (guess0|bi = 0)

the same as the case of guessing 1.
Thus the total correctness for 1 bit is,

Pg(1) = P (bi = 0 ∩ guess0 ∪ bi = 1 ∩ guess1)

= P (bi = 0|guess0)P (guess0)

+ P (bi = 1|guess1)P (guess1)

= P (bi = 0|guess0) = P (bi = 1|guess1)
= P (guess0|bi = 0) = P (guess1|bi = 1)

(10)

For the whole N-bits series B, the probability of guessing
is,

Pg(N) = Pg(1)
N

VI. EVALUATION

In this section, we carry out a simulation study of the
feasibility, accuracy and security when using SPFM. The
evaluation results show a good performance of SPFM in
different data length N.

In SPFM, output variables are True-Positive probability
PT−P , True-Negative probability PT−N , Correctness and
guessing probability Pg(N) (a measure of insecurity). Argu-
ments are pk(or p1), N , Kth(or nth), PT and M .

A. Complexity Analysis

To perform one time of DMS, we need to do N times of
subtraction, N-1 times of addition, one time of division and
one time of comparison. Obviously, the complexity of DMS
is O(N). So DMS is a very time-saving and energy-saving
scheme.

B. T-P and T-N probability

Fig.2(a) and Fig.2(d) show the correlations between PT−P
and arguments N , Kth and p1. Clearly, PT−P positively
correlates with p1 but negatively correlates with Kth. N has
different influence on PT−P according to other 2 arguments.
When Kth < p1, PT−P positively correlates with N and
converges to 1 quickly, otherwise PT−P negatively correlates
with N and converges to 0 quickly. This characteristic of
PT−P is important in following trade-off analysis.

Fig.2(b) and Fig.2(e) show the case of PT−N . PT−N
positively correlates with Kth but has no correlation with
p1. And on every condition, PT−N can always converge to
1 by increasing N . T-N probability is relatively much easier
to converge to 1 compared with T-P probability, so we will
firstly ignore it when doing following analysis and check it at
last.

C. Correctness

Fig.2(c) to Fig.2(f) show the case of correctness. Clearly, the
correctness positively correlates with all 3 arguments. And the
correctness can converge to 1 by increasing any argument.

Argument PT also has positive influence on the correctness.
Referring to the semi-Log figure Fig.3, we can see that given
other arguments, the correctness positively correlates with PT

and converges to 1. And it has a great gradient getting close
to 1 while it changes little near 1. This means there is a
range where the correctness is close to 1 and PT has little
influence on it. When increasing N or Kth, this range gets
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wider very quickly. For example, when N = 128, nth = 112,
the correctness stays nearly 1 when PT is as small as 10−6.
This characteristic gives a loose requirement when selecting
Data Tag for SPFM.
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Fig. 3: T-P, T-N, Correctness for N

D. Security

We use the probability of guessing the whole N-bit sequence
(Pg(N)) correctly as a measure of insecurity. So we suppose
Pg(N) to be relatively small.

Fig.4 shows the probability of guessing 1 bit (Pg(1)) for
different M and pk. Clearly, Pg(1) positively correlates with
both M and pk. According to M , N and the security demand,
certain pk can be determined. To achieve larger PT−P and
correctness, pk should be as large as possible, which may bring
privacy risk. So there needs a trade-off about security and
accuracy, which will be analyzed in next part.
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Fig. 4: Correct guess ratio for pk

E. Trade-off analysis

A trade-off is needed between T-P probability PT−P , T-
N probability PT−N , correctness and security(opposite of the
guessing probability Pg(N)). Firstly we conclude the general
correlation between these output variables and all arguments
in Table II, where ‘P’ represents ‘positive correlation’, ‘N’
represents ‘negative correlation’, ‘U’ represents ‘uncertain
correlation’ and ‘-’ represents ‘no correlation’. Details have
been analyzed in above parts.

TABLE II: Correlation between T-P, Correctness, Security and
arguments

Argument T-P T-N Correctness Security
pk P - P N
N U P P -
Kth N P P -
M - - - N
PT - - P -

We can divide the trade-off into 2 steps, because pk has
opposite effect on T-P probability, correctness and security
while N and Kth have opposite effect on T-P probability and
correctness.
• Choose pk according to M , N and system security

demand to make a trade-off between security and T-P
probability, correctness. To do this step we can refer to
the security analysis and Fig.4.

• Roughly select PT referring to Fig.3. Make another trade-
off between T-P probability and correctness by adjusting
N and Kth.

• Check F-N probability and all other output variables.
Repeat all steps if not meeting demand.

To make it clear to see the correlation of T-P probability
and correctness and make a trade-off, a 3-D plot is given at
Fig.5. The x-axis represents N ranging from 16 to 208 and
the y-axis represents Kth ranging from 9

16 to 1. The z-axis
represents the probability of T-P or correctness. The trend of
T-P probability and correctness with N and Kth increasing
conforms our above analysis.

Consider the intersection line of these 2 surfaces which
means the T-P probability equals to correctness. On the
direction of N increasing, the probability converges to 1 and
Kth gets close to a certain number that is larger than 0.5. This
means T-P probability and correctness can both converge to 1
at the same time by adjusting N and Kth.

We propose a possible method to make a trade-off here.
Recall that when Kth < p1 PT−P positively correlates with
N and converges to 1 and the correctness always positively
correlates with all arguments. So when Kth < p1, PT−P
and correctness can both converge to 1 at the same time by
increasing N . Therefore, to make a trade-off, firstly choose
a Kth < p1 and try increasing N to satisfy the demand and
repeat the method if not satisfied.

Fig.6 gives an example that all of T-P, T-N probability and
correctness converge to 1 when p1 = 0.75, Kth = 0.6875.
When N = 48, we have PT−P = 0.846405, PTN

= 0.9934,
correctness = 0.5715. When N = 208, we have PT−P =
0.9830, PTN

= 0.9999, correctness = 0.9999. Assuming
M = 10, referring to security analysis we can get the guessing
probability is: Pg(208) = 0.3487 which is relatively small. In
scene that in need of high security but don’t need a high degree
of accuracy, we can improve the security level through reduce
p1. When p1 = 0.745, N = 48, we have PT−P = 0.5450,
PTN

= 0.9996, correctness = 0.6034 and Pg(48) = 0.0004
when M = 1, Pg(48) = 0.76 when M = 10. When N =
208, pk = 0.75, we have PT−P = 0.6417, PTN

= 0.9995,
correctness = 0.5458 and Pg(208) = 1e− 26 when M = 1,
Pg(208) = 2.94e− 5 when M = 10.
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VII. CONCLUSION

In this paper we tackles the problem of conflicting phe-
nomenon that arise from variety of mobile cloud storage
nowadays. The problem stems from the conflict about exciting
functions cloud providing and the potential security issues in
cloud. Honest-but-curious server, cloud account loss or cloud
attack all may lead to exposure of users’ private data, which
will be an irreversible disaster. Thus, we develop SPFM to
achieve high accuracy matching while not expose accurate
private data to cloud. We provide thorough feasibility and
security proof and demonstrate the feasibility and security by
analyzing experiment performance.
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